Archives for posts with tag: Interaction

This is the final prototype of the Tesla User Interface. It was developed during the time of my diploma thesis in media computer science at the Ludwig-Maximilian University of Munich. Thanks go out to my supervisor Aurélien Tabard for a helping with this setup.

The wireless and batteryless control widgets are regular Mifare Classic 1k protocol RFID ICs by NXP Semiconductors, that have been enhanced with mechanical control element functionalities, like button, slider or rotary switch.

Few Words about the Reader Setup:


Under the white plate an Arduino is connected to two SM130 reader modules. Via two dual 4-channel analogue multiplexer/demultiplexer each of the modules itself is connected to two antennas like it can be seen in the figure above. The communication naturally proceeds through the modules. The Arduino directly controls the multiplexer, by applying a current to the multplexer’s address pins in the right way. Furthermore each module has a status LED that tells if it is ready and one LED indicating when an ID read event occurred. The detected ID information is delegated over the serial connection to the Arduino and from there further to the PC and the Processing software. This means that three serial communication connections have to be handled by the Arduino, what demands an equal baud rate. Therefore the maximum baud rate is determined by the maximum baud rate of the slowest component in the setup. And finally a picture of the wiring:



Digging deeper into the different aspects of the RFID technology, I started to get lost with details of protocols and data sheets. The search for RFID taxonomies, which helped me understanding the big picture did not exist. I found three older and smaller taxonomies on specific areas on the RFID technology or certain perspectives on it:

  1. A Multi-agent Architecture for RFID Taxonomy” by Son Le, Xu Huang, and Dharmendra Sharma (2007)
  2. Taxonomy and survey of RFID anti-collision protocols” by Dong-Her Shih, Po-Ling Sun, David C. Yen and Shi-Ming Huang (2006)
  3. A Taxonomy for RFID” by Taimur Hassan and Samir Chatterjee (2006)

But it seemed quite incomplete for the current state of the art of RFID, so I took those three and many other scientific facts (1, 2, 3, 4, 5, 6) I have gathered over time and tried to complement it, to give an up-to-date overview about this field. In order to cope with the many aspects and dependencies of RFID in terms of ubiquious computing and new user interaction possibilities it is really important to understand the big picture (click onto the image to get the whole big overview!):

RFID Taxonomy_overview

Creative Commons Lizenzvertrag
The 2013 RFID Taxonomy by Dario Soller is under the Creative Commons Attribution – Noncommercial – Share-alike 3.0 Unported License.

To me it seems pretty complete for January 2013, but it does not claim to be complete at all. RFID will continue to be a fast developping technology, especially in the near future, so feel free to expand and update this mind map and leave a comment, if you find any kind of wrong classification or you think there is something important missing. Here is the original mind map file (done with Xmind).

Another important part is the special RFID ISO/OSI Layer approach by Son Le et al.. Even though they have a little too much of this business perspective to it. In my opinion it is too early for this kind of business service view on RFID because of the many technological barriers which still have to be overcome. But from the view of communication engineering an own RFID OSI layer model would be really promising in finally getting RFID ubiquitous for everyone:


My 2013 RFID taxonomy doesn’t exactly represent these proposed RFID OSI Layers anymore, but it’s still an integral part of it. One simply has to leave the nodes Development, User Interaction, Security and Protocols away. The Physical and the Communication layers are very closed coupled and a bit overlapping as one can see on a closer look on the 2013 RFID taxonomy.